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RNases involved in RNA metabolism
Endoribonucleases: e.g. RNase E (prokaryotes)

RNA PNPase

. Aiase E L stgmrop .
Exoribonucleases . Q’%\ M‘L@

(RNase Il

5'—3": processive hydrolytic Xrnl
3'—b": processive (exosome core with Dis3) or distributive (Rrpé)

* processive phosphorolytic: PNPase (prokaryotes; organelles of
eukaryotic cells) and exosome complex in Archaebacteria

» processive hydrolytic: RNase R / RNase IT family

Hydrolysis : RNA + H,O — ribonucleoside monophosphates (rNMP)

Phosphorolysis : RNA + PO, < ribonucleoside diphosphates (rNDP)

H,O; PO, - nucleophiles attacking phosphodiester bond

Catalysis occurs in the presence of divalent cation (Mg?*, Mn?*, Zn?*)
as a cofactor (activation of the nucleophilic attack)




Eukaryotic mRNA metabolic pathways

MRNA decay in the cytoplasm is usually initiated through poly(A) tail removal
(deadenylation). This reaction (distributive) is controlled by a large protein complex
referred to as Ccr4-Notl. After deadenylation, mRNA can be degraded via two
different pathways:

— in the 3’-5’ direction (exosome complex)

— in the 5’-3’ direction (5’ cap removal by decapping complex and Xrnlp
exoribonuclease activity)
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Major eukaryotic RNA-degrading enzymes

Xrnl - 5'-3'

Chang et al.,
The enzyme

Nat Struct Mol Biol 2011

working on its own

Exosome - 3'-5" Large multiprotein complex

In the yeast nucleus collaborates with the TRAMP complex
(poly(A) polymerase Trf4/5, RNA helicase Mtr4 and RNA-
binding protein Airl/2); human counterpart - NEXT complex

In the yeast cytoplasm co-operates with putative GTPase
Ski7p and with the SKT complex, composed of Ski2p RNA
helicase and two additional proteins (Ski3p and Ski8p)



Exosome is a large 400 kDa protein complex
with 3’-5’ exoribonuclease activity

RNA processing [1,11]
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Subunit composition and intracellular localization of
exosome complexes in yeast

cytoplasm

nucleus
Chlebowski et al.,
in: ,,RNA exosome?”,
ed.: T.H. Jensen;
Landes Bioscience 2010



S. cerevisiae exosome core is a chimera composed of:

a) 6-subunit complex reminiscent of the ring of RNase PH/PNPase of archaebacterial
origin;

b) 3 subunits encompassing RNA-binding domains (KH and S1), which are also
present in the bacterial PNPase;

c) RNase ll/R homolog, Dis3/Rrp44 (the only catalytic subunit of the core)

All exosome core subunits are essential in yeast




Nucleases containing RNase PH domains participate in
RNA metabolism in organisms representing
all kingdoms of life

A) B) C) archaeal D) eukaryotic
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What is the activity of the exosome complex ?

Solved crystal structures of the archaebacterial exosome complexes
appeared similar to PNPase. It was suggested, that the

mechanism of action of the yeast exosome may be similar to the
activities of PNPase and archaebacterial exosome

Exosome PNPase

Buttner et al.,
Mol Cell 2005

It was even speculated that each of the 10 subunits of the yeast exosome may display
some catalytic activity

THIS IS NOT TRUE!



Biochemical ribonuclease activity assays
- the exosome complex as an example [ENZYMES]

* obtaining material for research: purification of complexes or individual
proteins from host cells (e.g. using TAP-tag) OR/AND heterologous
overexpression in bacteria, and their purification in a recombinant
form (optionally reconstitution of the complex from purified
recombinant proteins)

e opimization of reaction conditions for particular activity: i.a.
type and concentration of divalent cation, buffering agent, salt
concentration, temperature, reaction time

* the necessity of preparing variants of the protein of interest with
potential catalytic center mutations as negative controls

* possibility of narrowing down the analysis to the putative catalytic
domain in case the full-length protein turns out to be insoluble



Biochemical ribonuclease activity assays
- the exosome complex as an example [SUBSTRATES]

* analyzing RNA substrates labeled in various ways
(at the 5’ or 3’ end; internally)

e analyzing degradation of the substrates with different structure
(single-stranded: linear or circular; double-stranded)

* testing the degradation of both synthetic oligoribonucleotides and
natural RNA substrates obtained in the in vitro transcription (IVT)
reaction

* MATCHING RESULTS OF THE in vitro BIOCHEMICAL ANALYSES WITH
STRUCTURAL DATA AND RESULTS OF in vivo EXPERIMENTS



Exosome purification from yeast

Purification on IgG resin (Dis3 protein with TAP-tag as bait) + gel filtration

(Superdex S-200 column). The yield was 200 pg of the purified complex per

18 litres of the yeast culture
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Assaying the exosome biochemical activity

In order to assay the activity of the exosome core (9-subunit
ring + Dis3p protein), the complex was purified using Rrp41-
TAP fusion from the S. cerevisiae strain lacking RRP6.

- In the preliminary experiments, no
| phosphorolytic activity was detected, but a
Rrpt3 e very low hydrolytic activity was noticed.
mam;:uf This forced the need for optimization of the
Rrpas - b parameters for assaying the biochemical

activity of the complex.

SDS-PAGE analysis

Dziembowski et al., Nat Struct Mol Biol 2007



Exosome is a hydrolase

Exosome activity is dependent on the Mg ions, but strongly
inhibited at magnesium concentrations exceeding 1 mM.

An example of optimization of the divalent cation concentration in the reaction mixture

All previous in vitro experiments were carried out in conditions, in which the actual
activity of the complex is ca. 100-fold lower than that in optimal conditions

No phosphorolysis (no evidence of UDP formation) was detected
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Analysis of the exosome activity using TLC (PEl-cellulose) at variable
Mg?* and EDTA concentrations (buffer: 10 mM Tris pH=8; 75 mM NaCl; 1

mM B-mercaptoethanol)
Dziembowski et al., Nat Struct Mol Biol 2007



Dis3 — potential catalytic subunit

e Organization of Dis3p functional domains in comparison to RNase Il

D171N D198N D551N
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644
E.coli RNase |l _
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- meanwhile, a mutation abolishing E. coli RNase IT (D209N) was identified

[D209 residue is involved in the coordination of Mg?* ion]
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Does an analogous mutation of the Dis3 protein
affect the survival of yeast?

- homologous aspartate (D551) in DIS3 was converted to asparagine by
in vivo recombination in two yeast strains: wild-type (for phenotype
analysis) and in strain with RRP6 deletion (Arrp6) (for purification of the
complex to be used in activity assays)

DIS3 D55IN substitution exerts a very strong growth
phenotype

CONCLUSION: an intact D551 amino acid is indispensable for proper
functioning of the cells

HYPOTHESIS: Dis3 D551N mutation abolishes catalytic activity
of the exosome




Does D551N mutation abolish hydrolytic activity of
the exosome?
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Analysis of exoribonucleolytic activity of exosomes containing
Dis3 WT or Dis3 D551N towards RNA substrate labeled with [32P]-pUpU at its 3’-end

CONCLUSION: The presence of an intact D551 amino acid is a pre-requisite

of the proper nucleolytic activity of the exosome complex
Dziembowski et al., Nat Struct Mol Biol 2007



The exosome complex and Dis3 alone have comparable
activity towards different RNA substrates ...« andea
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CONCLUSION: Results of in vitro experiments indicate, that Dis3 is a major
catalytic subunit of the exosome complex

Dziembowski et al., Nat Struct Mol Biol 2007



How to determine what nuclease are we dealing with based
on the results of biochemical experiments ?

3’-5’ exoribonucleases 5’-3’ exoribonucleases

endonucleolytic
degradation



Are human homologs of Dis3 — hDIS3 i hDIS3L — also
3’-5’ exonucleases?
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To be absolutely certain, substrate labeled at the

opposite terminus also has to be examined
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Human Dis3 orthologs are 3’-5’ exoribonucleases

3’-5’ exoribonucleases 5’-3’ exoribonucleases
*|

o . ——— |

endonucleolytic
degradation



How about 5’-3’ exonucleases?

Example 1: Xrnl from S. cerevisiae

5’ end labeling with 3’ end labeling with
[v-32P] and T4 PNK [32P] pCp and T4 ligase

0 05 1 15 2 3 4 35 0 05 1 18 2 3 4 5:""":
D — e ———

PAGE analysis

e e b w-p@

Pellegrini et al., Methods enzymol 2008



Xrnlis a 5’-3’ exoribonuclease

3’-5’ exoribonucleases 5’-3’ exoribonucleases
*|

endonucleolytic
degradation



Does RNase J1 work in the 3’-5’ or 5’-3’ direction?

5’ end labeling with 3’ end labeling with
[v-32P]i T4 PNK SR47 [32P] pCp and T4 ligase

5p* 5'0H-3p*Cp 5 p-3p*Cp

Ladder

time (min) 0 20 60 02 52060 0 2 5 2060

RNA* | s k..m

Clouet-d'Orval et al.,
J Biol Chem 2010

PAGE analysis
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It is impossible to say based on above results !



It is not always that straightforward...

3’-5’ exoribonucleases 5’-3’ exoribonucleases

endonucleolytic
degradation



How to determine this definitively ?

Asymmetric introduction of an element slowing down nucleolytic activity into
the substrate

2]-RNA  21*-RNA
5p*  3p*Cp 5p* 3p*Cp

time (min)

Ladder

010 60 0 10 600 10 60 0 10 60

PAGE analysis TS g | RNAT

there it is !!!
(5’-3’ activity)

e |- |-

no such fragment
(no 3’-5’ activity)

Clouet-d'Orval et al., SR ; CMP*
J Biol Chem 2010




Activity of multiple ribonucleases depends on the 5’ end

phosphorylation status — how to study this phenomenon?

Preparation of substrates with different 8’ ends:

In vitro transcription in the presence of [a-3?P]UTP:

1) equal NTP concentrations —triphosphate

2) excess of NMP corresponding to the 1st nucleotide of the substrate —
monophosphate

1) substrate treatment with alkaline phosphatase — hydroxyl group

2) excess of cap analog (eukaryotic transcript) — guanosine cap

B RNase E cleavage in vitro: Escherichia coli
Mono®)-rpsT Tri®)-rpsT HO-rpsT PAGE analysis
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Celesnik et al.,
Mol Cell 2007

rpsT-|ww e O G s

Pyrophosphate removal in E. coli is catalyzed by RppH
pyrophosphohydrolase. This is a step initiating degradation, which
precedes RNA cleavage by RNase E !




Other examples of nucleases dependent on the 5’ end sensor

* RNase J1 Bacillus subtilis and Archaea * Ratl (collaborates with
(see above) Rail pyrophosphohydrolase)

* RNase Y Bacillus subtilis

B 5-P 5-PPP .
analiza PAGE
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S e aa Xiang et al.,
Pellegrini et al., Methods enzymol 2008 Nature 2009



Is Dis3 exclusively a 3’-5’ exoribonuclease ?

... on that it is worth dedicating some time to a thorough analysis of the amino acid sequence
of the protein of interest

e Organization of Dis3 functional domains compared to RNase Il
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PIN domain-containing proteins are nucleases

1239

SMG6 protein structure (Glavan et al., EMBO J, 2006)

e T4 bacteriophage RNase H
e FEN1 endonuclease
e Nob1 protein participating in the endonucleolytic 20S pre-rRNA processing

e SMG6 protein —a component of NMD machinery, displays endonucleolytic activity



Dis3 D551N (exo-) mutant devoid of exoribonucleolytic
activity is still able to degrade RNA in vitro

An example of optimization of the type of divalent cation used in the reaction

DiS3oesmm @ D551N
MnCl, | MgCl, | ZnCl, [EDTA[MnCI, 1 82 242 * 1001
e L N e 00
\_ .” N-ter PIN CSD1 CsD2 RNB S1
- - -%55
Preferences towards cofactors:
- : [Mn2*] > [Zn?*] > [Mg?*]

substrate labeled at the 5’ end

PAGE analysis

Lebreton, Tomecki et al., Nature 2008



Nucleolytic activity of Dis3 D551N (exo-) mutant requires
high Mn?* concentration

An example of optimization of the concentration of a divalent cation used in the reaction
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Is the observed additional nucleolytic activity
assoclated with the PIN domain?

Additional mutations of conserved aspartate residues within the PIN domain catalytic triad
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The presence of catalytic aspartate residues In
Dis3;\ IS necessary for RNA degradation in vitro

substrate labeled at the 5’ end PAGE analysis hbstrate labeled a e 3’ end
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"ladder" of degradation products observed for substrates labeled at opposite ends
suggests that we observe endoribonucleolytic activity




Example of an endoribonucleolytic degradation pattern

3’-5’ exoribonucleases 5’-3’ exoribonucleases
*|

endonucleolytic
degradation



How to unequivocally confirm that the PIN domain
IS assoclated with endoribonuclease activity ?

Testing the enzyme activity towards RNA substrate without free ends
(that is ... CIRCULAR)

circular substrate
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PIN domain is associated with the novel
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degrade a broad repertoire of substrates:
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e circular

... which proves that it is an endonuclease !

- eeeeee leolytic
“* — degradation
‘ products

Lebreton, Tomecki et al., Nature 2008



Degradation of circular substrates — only endonucleases !

3’-5’ exoribonucleases 5’-3’ exoribonucleases
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Is endoribonucleolytic activity of the PIN domain
dependent on the rest of the Dis3 protein?

The necessity to purify a single protein domain and to examine its activity
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PIN domain alone displays endonucleolytic activity, which is
abolished by mutations of conserved aspartate residues in
the active site
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Exosome substrates in pre-rRNA processing

pathways
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Impact of Dis3 mutations on the exosome
subtrate — 5’-ETS —In vivo

DIS3 allele
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5’-ETS cleavage by Dis3 PIN was confirmed in vitro

endonucleolytic
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Mapping of degradation intermediates by cRT-PCR

supports the endonucleolytic cleavage in vivo
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How both Dis3 activities collaborate
with one another? — a model

Hypothesis based on data from biochemical assays and in vivo experiments
in vivo

endo

I

endo

o

J Tomecki and Dziembowski,

RNA 2010

Dis3p WT
(exo+ endo+)

Dis3p D551N Dis3p D171N D551N
(exo- endo+) (exo- endo-)




The third activity of the exosome (in addition
to Dis3 and Rrp6 exoribonucleases)

Dis3;,\ IS an endoribonuclease specific towards ssRNA

— In vitro, cleaves both linear and circular
RNA substrates

— In vivo, participates in the decay of
known natural exosome substrates

— PIN domain catalytic mutations cause
synergystic phenotypes in combination
with mutations of exonucleolytic
activities

PIN domain endonucleolytic activity may assist exonucleases

— by providing alternative sites of degradation initiation
when the exosome path is blocked by the presence of
secondary structures within the RNA substrate



Activity of Dis3 and activity of the entire exosome — what

can such comparisons tell us?
... On that it is worth examining the degradation pattern of substrates with different structures

single-stranded substrates

double-stranded substrates
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Some properties of the exosome make the degradation of double-stranded substrates

less efficient than this observed for Dis3 alone



Does Dis3p display RNA helicase properties?

double-stranded substrates "

Rrp44 .. Rrp44AN no protein] Lorentzen et al.,

ds17-A, ds17-A, ds17-A,| ds17-A, ds17-A, dsi7-A, [,%7, | Mol Cell 2008
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¥ |-
duplex RNA

< ~ substrates

T B degradation
intermediate

<« released
complementary
strand

electrophoresis of degradation products in native polyacrylamide gel

Dis3p is able to unwind double-stranded RNA substrates
rovided that the single-stranded extension of appropriate length is present at the 3’

end of one of the strands

Lack of PIN domain decreases the efficiency of unwinding of double-stranded
substrates with single-stranded fragment of , intermediate” length




The differences in the biochemical properties of Dis3 and RNase Il
arise from the different spatial location of the RNA-binding domains
.... on how important is combining biochemical data with structural information

Dis3p RNase Il

ANB domaln

CSD2 domain

S1 domain

degrades stalls upon
dsRNA encountering

secondary

Lorentzen et al., structure

Mol Cell 2008



Structural data explain the ability of Dis3 to unwind
double-stranded RNA substrates in the course of
their degradation

Dis3p RNase Il

Lorentzen et al.,
Mol Cell 2008

RNA hydrolysis leads to the rotation of the RNA chain, which provides energy
allowing the strands to be separated during subsequent rounds of catalysis



Does the mystery of the differences between the activities of
Dis3 and the exosome lie in the structure of the complex?

Where is Dis3 localized with respect to the ring?

PM-Scl100

+ nucleus-specific
. Subunits  /

crystallization of the
reconstituted

z

9-subunit ring
of the human
exosome

Liu et al., Cell 2006; Hernandez et al., EMBO Rep 2006; Dziembowski et al., NSMB 2007



Dis3 is localized underneath the exosome ring
(I.e. opposite the site of KH/S1 cap subunits location)

core with Dis3 core without Dis3

EA

RNA entrance
‘1, to the channel?

"

structure of the
exosome core
(9-subunit
Dis3 active site

ring + Dis3)

solved using
electron microscopy
(negative staining)

Wang et al.,
PNAS 2007



Dis3 alone binds single-stranded RNA fragments of
significantly different length than when working in the
context of the exosome core

K107-K108

channel entrance

K62-S63
(ring entry site)
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protection
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CONCLUSION: RNA traverses the channel before reaching
Dis3 active site




The substrate path through the ring channel is indeed
evolutionary conserved

Malet

et al.,
EMBO Rep

2010

Extra dehsity from RNA and
loops from K1/SH cap proteins

,»apo” structure structure with RNA

RNA oligonucleotide (partially
double-stranded, with ~35 nt
single-stranded stretch), biotinylated
at the 5' end, conjugated

with colloidal gold (5 nm)-labeled
streptavidin — BLACK DOTS

structure of the
exosome core

solved by cryo-electron
microscopy

structure of the
exosome core

solved using electron
microscopy
(negative staining)



Double-stranded RNA substrates are degraded by RNB domain in
the context of exosome core provided that
the single-stranded 3’ extension of appropriate length is present
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Blocking the channel decreases degradation efficiency of
RNA substrates — both single- and double-stranded
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Is this route utilized both for directing the substrate to
the RNB domain as well as to the PIN domain?

Malet
D et al.,
RNApath  EvMBO Rep

X/
Extra density from RNA,

Rrp41, Rrp45, (Rrp44.qp,)

Exonuclease
: active site
,»apo” structure structure with RNA -




Occluding the channel inhibits PIN domain endonucleolytic
activity too!
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It appears that the central channel rather does not partake in
the regulation of Rrp6 activity
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Summary —what you should remember

. Always start with a detailed analysis of the sequence of the protein being examined
and available information about homologs

. Test as many reaction conditions as possible (different substrates, cofactors,
various buffers) and remember about all possible controls (both negative ones —
particularly mutations in the putative catalytic sites, and positive)

. Compare activities of individual proteins and entire complexes or sub-complexes
— this can sometimes unveil interesting information

. Strive to obtain the structure of the tested protein/complex, because only then
proper interpretation of the ,wet lab” experiments would be possible, but ...

. ... the structure on its own will not tell us much without biochemical data
. Attempt to verify structural and biochemical data through experiments in a living

system — whether what we discovered in the test tube actually works similarly
in the cell and has biological significance?
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