

RNA DECAY

RNases

Endonucleases

processing (RNase P, RNase III, RNase E): specific, cleavage results in 3'-OH and 5'-P (monophosphate) <u>degrading</u> (RNase I, RNAse A): unspecific, cleavage results in 5'-OH and 3'-P (cyclic phosphate)

Exonucleases

hydrolytic: attacking group H₂O, results in 3'-OH and 5'-P

phosphorolytic: attacking group inorganic phosphate, results in 3'-OH and 5'-PP

RNA PROCESSING and DECAY machinery: RNases

Protein	Function	Characteristics
Exonucleases	5' → 3'	
Xrn1 Rat1 Rrp17/hNol12	cytoplasmic, mRNA degradation nuclear, pre-rRNA, sn/snoRNA, pre-mRNA processing an nuclear, pre-rRNA processing	nd degradation
Exosome 3'→ Rrp44/Dis3 Rrp4, Rrp40 Rrp41-43, 45-46 Mtr3 Ski4	5' multisubunit exo/endo complex catalytic subunit pre-rRNA, sn/snoRNA processing, mRNA degradation participates in NMD, ARE-dependent, non-stop decay	subunits organized as in bacterial PNPazy Exo/PIN domains, distributive, hydrolytic
Rrp6, Rrp47p Ski2,3,7,8 RHAU Rex1-4	nuclear helicase cofactor cytoplasmic exosome cofactors helicase cofactor, ARE mRNA decay 3'-5' exonucleases, rRNA, snoRNA, tRNA processing	DEAD box helicase, GTPase DExH box RNase D homolog
<u>mtEXO 3'→5'</u> Suv3/ Dss1	mitochondrial degradosome RNA degradation in yeast helicase/ 3'-5' exonuclease	DExH box/ RNase II homolog
Deadenylation Ccr4/NOT Pop2 Pan2p/Pan3 PARN	major deadenylase complex (Ccr, Caf, Pop, Not proteins) deadenylation regulator, deadenylase activity additional deadenylases (poliA tail length) mammalian deadenylase	Ccr4- Mg ²⁺ dependent endonuclease RNase D homolog RNase D homolog, poly(A) specific nuclease RNase D homolog, poly(A) specific nuclease
Endonuclease RNase III -Rnt1 -Dicer, Drosha Ago2 Slicer SMG6 RNase P RNase MRP RNase L ELAC2/Trz1	s pre-rRNA, sn/snoRNA processing, mRNA degradation siRNA/miRNA biogenesis, functions in RNAi mRNA cleavage in RNAi mRNA cleavage in NMD 5' tRNA end processing pre-rRNA processing rRNA degradation in apoptosis 3' tRNA endonuclease	dsRNA specific PAZ, RNA BD, RNase III domains PIN domain RNP complex RNP complex, similar to RNase P oligo 2-5A dependent (ppp(A2'p) _n A) PDE motif and Zn ^{2+ -} binding motif

Eukaryotic auxiliary decay factors

Function / Characteristics

<u>5'→3' decay: decapping</u>

Protein

Dcp1/Dcp2	Dcp2- pyrophosphatase catalytic activity, Nudix domain, Dcp1- protein binding	
Hedls/Ge-1/Edc4	decapping cofactor, WD40 domain	
Edc1,2,3	decapping enhancers, stimulate cap binding/catalysis, Edc1-2 (yeast), Edc3 (all eykaryotes)	
Dhh1	DexD/H ATPase, decapping activator by translation repression	
Lsm1-7	decapping activator, heptameric complex, binds mRNA 3' end-U rich tracts	
Pat1	decapping activator by translation repression	

TRAMP complex: nuclear RNA surveillance, polyadenylation-dependent degradation

- Trf4/Trf5 nuclear alternative poly(A) polymerases
- Mtr4 DEAD box helicase
- Air1/Air2 RNA binding proteins, also nuclear exosome cofactor

Nrd1-Nab3-Sen1 complex: PollI termination of small RNAs, TRAMP-depdendent degradation

- Nrd1 Pol II C-terminal domain (CTD) binding, RNA binding
- Nab3 RNA binding
- Sen1 RNA helicase

EXOSOME: 3'→5' decay machinery

Crystal structure of human core exosome

- 10 core components (RNA BP)
- catalytically active exo hydrolytic Dis3/Rrp44 (RNase II)
- PIN domain with endo activity
- nuclear cofactors- RNA BP Rrp47, nuclease Rrp6 (RNase D), RNA helicase Mtr4
- cytoplasmic cofactors- Ski2-3-8 complex (RNA helicase Ski2), GTPase Ski7
- subtrates- processing and/or degradation of almost all RNAs

EXOSOME: 3'→5' decay machinery FUNCTIONS

NUCLEAR: Rrp6 and core components have partly separate functions

- 3' end processing of 5.8S rRNA, sn/snoRNAs, tRNAs, SRP RNA
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of other ncRNAs: CUTs, PROMPTS

CYTOPLASMIC:

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay,

ARE-dependent decay

XRN family: $5' \rightarrow 3'$ processive exonucleases

Kastenmayer and Green, 2000, PNAS

Crystal structure of *S. pombe* Rat1/Rai1 complex

NUCLEAR

Rat1/XRN2 with Rai1 activator (5'-ppp pyrophosphohydrolase and phoshodiesterase-decapping nuclease)

- 5' end processing of 5.8S and 25S rRNAs, snoRNAs
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of some ncRNAs: CUTs
- transcription termination of Pol I and II (torpedo mechanism)

Xiang et al, 2009, Nature

CYTOPLASMIC XRN1

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay,

ARE-dependent decay

- degradation of miRNA-dependent mRNA cleavage products (in plants)
- degradation of some ncRNAs: CUTs, SUTs, XUTs

DCP- decapping enzymes

- <u>Dcp1/Dcp2</u> complex participates in mRNA 5' decay
- catalyses the reaction $m^7 \text{GpppX-mRNA} \rightarrow m^7 \text{GDP}$ + 5'p-mRNA
- Dcp2 is the catalytic subunit (pyrophosphatase Nudix domain)
- Dcp1 is required for activity *in vivo*, interacts with other proteins
- Dcp1/Dcp2p is regulated by Pab1 and activating factors

She et al. Nat. Struct. Mol. Biol, 2004 (yeast Lsm1-7, Dhh1, Pat1, Edc1-3, Upf1-3)

Wang et al. PNAS, 2002

- <u>DcpS</u>: HIT pyrophosphatase ("histidine triad" on the C-terminus)
 catalyses the cleavage of m⁷GDP → m⁷GMP + Pi remaining after
 decapping during mRNA 5' decay
- cooperates with the exosome during mRNA 3' decay (m⁷GpppX-oligoRNA \rightarrow m⁷GMP+ pp-oligoRNA)
- functions as an asymmetric dimer

Gu et al., M.Cell, 2004

LSM PROTEINS

Achsel et al, EMBO J, 2001

Involved in pre-mRNA splicing

- associates with U6 snRNA
- required for U6 RNA accumulation and U6 snRNP biogenesis
- interacts with the U4/U6.U5 tri-snRNP

Functions in mRNA decapping and decay

- activator of decapping
- interacts with components of the mRNA decapping and degradation machinery (XRN, DCP)

- normal mRNA decay involves deadenylation
- LSM/Pat1 binds and protects deadenylated mRNA 3' ends against 3'-5' degradation and recruite Dcp complex to activate 5'-3' decay
- depending on organism different pathway (5'-3' or 3'-5') dominates

mRNA DEGRADATION in the CYTOPLASM

RNA SURVEILLANCE = RNA QUALITY CONTROL MECHANISMS

- <u>NMD</u>- (nonsense mediated decay) degradation of mRNAs with premature stop codons (PTC)
- **NSD** (non-stop decay) degradation of mRNAs with no stop codons
- <u>NO-GO</u> decay- degradation of mRNAs stalled in translation elongation
- <u>AMD</u>-<u>ARE</u> mediated <u>decay</u>- rapid degradation of mRNAs with specific instability elements (e.g. AU-rich)
- nuclear RNA degradation (mRNA, pre-mRNA, rRNA, tRNA) degradation of RNA species that were not properly processed i.e. spliced, end-matured, modified....

NMD

- degradation of mRNAs containing premature STOP codons (PTC)
- prevents expression of truncated, possibly harmful, proteins
- 33% of yeast intron-containing mRNAs undergo NMD
- 30% of alternatively spliced human mRNAs generate NMD substrates NMD factors

MECHANISM OF NMD

1. Recognition of premature stop codon during translation

splicing-related mechanism

- EJC deposited as a mark of splicing
- Upf3 is bound to mRNA via EJC
- mRNA is exported and Upf2 joins Upf3

translation termination and unified 3'UTR mechanism: ribosome not interacting with 3'UTR factors is arrested on the PTC

2. Assembly of the active NMD complex and repression of translation

EJC downstream of PTC is not removed by the advancing ribosome

SURF complex, Upf1.SMG1 and eRF1-2, is recruited by the stalled ribosome

Upf1 is phosphorylated by SMG1 eRF1-eRF2 are released

mRNA is directed for degradation

MECHANISM OF NMD

3. mRNA degradation

Parker and Song, Nat. Struct. Mol. Biol. 2004; Isken and Maquat, Gene Dev. 2007

NGD and NSD

- <u>NGD</u> (non-go decay) degradation of mRNAs stalled on ribosomes
- <u>NSD</u>- (<u>non-stop decay</u>) degradation of mRNAs with no stop codons

Garneau et al, Nat. Rev. Mol. Cel. Biol. 2007

NGD and NSD

- <u>NGD</u> (non-go decay) degradation of mRNAs stalled on ribosomes
- <u>NSD</u>- (<u>non-stop decay</u>) degradation of mRNAs with no stop codons

Dom34:Hbs1 stimulates degradation of the 5'-NGD intermediate and nonstop mRNA by dissociating the ribosome that is stalled at the 3' end of the mRNA

STAUFEN-mediated DECAY (SMD)

STAU1, a dsRNA binding protein, recruits UPF1 to target mRNA 3'UTRs to elicit SMD in a translation-dependent fashion. SMD targets contain a STAU1 binding site (SBS) within their 3' UTR. They include newly synthesized CBC-bound mRNAs and steadystate elF4E-bound mRNAs.

Some mRNAs are targeted to SMD by IncRNAs (Alu elements) which form SBS with SMD substrates.

Gong and Maquat, Nature 2011

OTHER MECHANISMS

Endonuclease mediated decay

- PMR1 degradation of translationally active mRNAs on polysomes
- IRE1 degradation of mRNAs in endoplasmic reticulum during Unfoded Protein Response stress
- MRP (*RNP* responsible for pre-rRNA processing in the nucleolus) cleaves CLB2 mRNA within its 5' UTR in yeast
- Rnt1 (RNAse III endonuclease, involved in pre-rRNA and pre-sn/snoRNA processing) cleaves stem-loops structures in some ribosomal protein mRNAs

mRNA DECAY in the NUCLEUS

nuclear retention of intron-containing pre-mRNAs

RES complex (REtention and Splicing): Snu17/Bud13/Pml1

Casolari and Silver, TiCB., 2004

mRNA DECAY

pre-mRNA with unspliced introns

mRNA DECAY

mRNA arrested in the nucleus

NUCLEUS

Hilleren et al., Nature, 2001; Das et al., Mol. Cell. Biol. 2003; Kufel et al., Mol. Cell. Biol. 2004, Milligan et al., Mol. Cell. Biol. 2008

mRNA SYNTHESIS and DECAY

TRAMP/NEXT EXOSOME COFACTORS

LaCava et al., Cell, 2005; Vanacova et al., PLoS Biol. 2005; Wyers et al., Cell, 20(

tRNA SURVEILLANCE

RAPID tRNA DECAY

 occurs for precursors and mature tRNAs with mutations which destabilize tertiary structure (modifications)

- in the nucleus (polyadenylation via TRAMP and degradation by the exosome or degradation by Rat1)

- in the cytoplasm (degradation by Xrn1)

Phizicky and Hopper, GeneGev., 2010

rRNA SURVEILLANCE

rRNA SURVEILLANCE

NRD- nonfunctional rRNA decay

Cytoplasm: mature ribosomes

Mms1, Rtt101subunits of E3 ubiquitin ligase complex

Dom34::Hbs1 factors involved in NGD and NSD

Lafontaine, TiBS.,2010

RNA SURVEILLANCE

Tuttuci and Stutz., Nat. Rev. Mol. Cel. Biol., 2011

NUCLEAR RNA SURVEILLANCE

Tuttuci and Stutz., Nat. Rev. Mol. Cel. Biol. , 2011

I. RNA WORLD

 hypothesis – life started from prebiotic soup via self-sufficient RNA to DNA/RNA/protein world

- **RIBOZYMES** catalytic RNAs, active without proteins
- 2'-OH, Mg²⁺, H₂O, nucleophilic attack
- self splicing introns, RNAse P RNA (bacterial, archaeal)
- almost catalytic RNAs- SPLICEOSOME, RIBOSOME
- **SELEX** procedure to select molecules with desired function

• RNA NOBELS: 1989 RIBOZYMES, 1993 SPLICING, 2006 RNAi, 2009 telomerase, ribosome structure

II. MODERN RNA WORLD

- replication (telomerase RNA, RNA primers)
- transcription regulation (ncRNAs, siRNA)
- RNA processing (snRNAs for pre-mRNA, snoRNA for pre-rRNA, gRNA for editing, RNAseP for pre-tRNA RNAseMRP for pre-rRNA)
- RNA stability (sRNAs, si/miRNAs)
- translation regulation (ncRNAs, miRNA)
- translation (rRNA, tRNA, mRNA)
- protein translocation (signal recognition particle)

 GENE EXPRESSION regulated at each step: transcription, processing (splicing, 3' end formation), RNP assembly, export, RNA decay/RNA surveillance, translation, protein stability

III. RNA METABOLISM

A.SYNTHESIS: 3 to 5 RNA polymerases, each makes specific RNAs

Pol I (rRNA); Pol II (mRNA, sn/snoRNA, CUT, miRNA); Pol III (5S rRNA, U6 snRNA, tRNA, other); Pol IV/V (siRNA pathway)

B. PROCESSING – all RNAs are processed from precursors and assembled into RNP structures

- transcription termination
- unified allosteric-torpedo model (Rat1 5'-3' exo)
- 3' cleavage and polyadenylation machinery (mRNA)
- Nrd1/Nab3/Sen1 mechanism (sn/snoRNA, CUT, short mRNA)
- Reb1, Rat1, Rnt1, Nrd1/Nab3/Sen1 (rRNA, and others)
- pre-mRNA splicing (snRNA), polyadenylation, modification
- pre-rRNA processing a very complex pathway (snoRNA)

 <u>endo-</u> (RNaseIII, RNase P/MRP) and <u>exo-</u> (exosome, Xrn1/Rat1) <u>nucleolytic processing</u>

IV. COTRANSCRIPTIONALITY

- CTD of Pol II, Ser-P status (S5-P initiation, S2-P elongation/termination)
- m7G cap synthesis
- assembly of splicesome and processing factors (cleavage and polyadenylation and Nrd1/Nab3 termination complexes, enzymes like Rat1, exosome)
- assembly of export factors (e.g. Mex67, Yra1)
- **splicing**, **at least partially** (for longer genes)
- some processing (pre-rRNA cleavages) and modification
- connection between transcription, processing and export via THO/TREX and TREX-2 complexes (gene gating)

V. RNA DECAY

- **normal** (usually in the cytoplasm)
- specialized, RNA surveillance: targeting aberrant, unstable transcripts for discard pathway (NMD, NSD, NGD, ARE, NRD etc)
- 1. deadenylation → decapping → exonucleolytic degradation
- 5'-3' by Xrn1/Rat1 or 3'-5' by exosome
- 2. by endo- cleavage (miRNA-dependent, RNAse III/Rnt1, MRP, SMG6) followed by exo- digestion (Xrn1/Rat1, exosome)
- nuclear RNA surveillance: polyadenylation by TRAMP (Trf4/5) followed by degradation by the exosome, Xrn1 or Rat1

PROCESSING AND DEGRADATION IS OFTEN CARRIED OUT BY THE SAME MACHINERIES