Pol II - mRNA synthesis

Pol II, S. cerevisiae (12 subunits)

- core by specific Rpb1-3, 9 and 11

specific subcomplex Rpb4/7 not essential

CTD: Tyr₁Ser₂Pro₃Thr₄Ser₅Pro₆Ser₇

26 (yeast) - 52 (human) repeats

- Rpb5-6, 8, 10 and 12 - shared by Pol I-III

Co-transcriptional mRNA processing

CTD posphorylation status

Phospho-CTD Associated Proteins

- transcription
- chromatin structure
- RNA processing
- (splicing, 3' end formation)
- RNA export
- RNA degradation
- snRNA modification
- snoRNP biogenesis
- DNA metabolism
- protein synthesis and degradation

CAPPING

Co-transcriptional capping - occurs after the synthesis of 10-15 nt of RNA

- CE recruitment to CTD requires high Ser5-P

GT/Ceg1-guanylyltransferase MT/Abd1-methyltransferase (promote early elongation) Cet1-RNA triphopshatase (inhibits re-initiation) CBC-cap binding complex

Co-transcriptional mRNA processing: SPLICING

Chrissie Barrass, 2011, cover of Mol. Cell

Pre-mRNA SPLICING

de Almeida and Carmo-Fonseca, FEBS Lett, 2008

Pre-mRNA SPLICING: CIS ELEMENTS

The consensus splicing sequences are not so conserved after all

Warf and Berglund, 2010, TiBS; Reddy, Ann.Rev.PlantBiol., 2007

Pre-mRNA SPLICING: TRANS ELEMENTS

Warf and Berglund, 2010, TiBS; Reddy, Ann.Rev.PlantBiol., 2007

RNA catalyses nuclear pre-mRNA splicing

Sebastian M. Fica^{1,2}*, Nicole Tuttle³*, Thaddeus Novak⁴, Nan-Sheng Li⁴, Jun Lu³, Prakash Koodathingal², Qing Dai³, Jonathan P. Staley² & Joseph A. Piccirilli^{3,4}

Chemistry of pre-mRNA splicing and U2/U6 model

TRANSCRIPTION AND SPLICING

ALERNATIVE SPLICING (AS)

ALERNATIVE SPLICING (AS)

Exons and introns often contain sequences that facilitate or inhibit splice site usage.

These elements bind splicing activators or repressors.

ESR – exonic splicing regulatory elements ISR – intronic splicing regulatory elements ESS/ISS – exonic/intronic splicing silencers ESE/ISE - exonic/intronic splicing enhancers

SR – Ser/Arg rich proteins
PTB – polypyrimidine tract-binding proteins
hnRNP – heterogenous nuclear RNP

AS occurs at the level of recognition of splice sites and other regulatory elements by RNA-binding proteins

AS – splicing CODE: chromatin, ncRNAs, SF

CLEAVAGE AND POLYADENYLATION

Millevoi and Vagner, NAR, 2008

TRANSCRIPTION TERMINATION: hybrid allosteric- torpedo model

Luo and Bentley, Gene Dev, 2006

3'-end processing factors are recruited to Ser2-P CTD at 3' end of genes via CID (CTD-interacting domain) of Pcf11 for CP and Rtt103 for Rat1 5'-3' exonuclease and its activator Rai1.

<u>Pcf11</u> and <u>Rat1</u> coordinately contribute to the recruitment of 3'- end processing factors

Nrd1/Nab3/Sen1-dependent TERMINATION

 Histone pre-mRNA contains conserved stem-loop (SL) structure, recognized by the SLBP (SL-binding protein)

• SLBP, ZFP100 and HDE (histone downstream element) stabilize the binding of U7

 U7 snRNP, specificaly Lsm11, recruits cleavage factors and the cleavage by endonuclease CPSF-73 generates mature 3' end of histone mRNA

Dominski and Marzluff, Gene, 2007

POLYMERASE BACKTRACKING

Regulatory pauses and arrests

Termination mechanisms

Transcriptional fidelity

Elongation rate control

Coupling transcription to translation in bacteria

Cotranscriptional RNA folding and processing

Genome instability

Polymerase backtracking in genome stability Double-strand break (DSB) formation as a result of codirectional collisions between the replisome and backtracked RNA polymerase in bacteria. Transcript cleavage factor (Gre) prevents polymerase backtracking and R loop formation, preserving genome integrity.

Nudlerr, Cell, 2013

RNA EXPORT

mRNA EXPORT – ALL FACTORS

SAGA histone acetyltransferase complex (including **Spt, Ada, Gcn5**); trx activation **THO** mRNP biogenesis and export: **Hpr1, Mft1, Tho2** and **Thp2** (human **THOC1-7**)

TREX transcription-export complex: **THO/Sub2/Yra1**, interacts with NPC via Mex67-Mtr2 **TREX-2** transcription-export complex: **Cdc31/Thp1/Sac3** and **Sus1** from **SAGA**

<u>TREX-2</u> and <u>TREX</u> complexes link transcription (Pol II via THO, initiation complex SAGA via Sus1) to export receptors (Mex67, Yra1) and Nuclear Pore Complex

EXPORT of other RNAs

Mature mRNA: TRANSLATION

UTR- <u>UNT</u>RANSLATED <u>R</u>EGION EJC- <u>E</u>XON <u>J</u>UNCTION <u>C</u>OMPLEX

- eIF4E interacts with m7G cap to form translationally active mRNA:
 cap dependent translation
 - circular mRNA protects agains degradation and stimulates translation
 - eIF4E/eIF4G/PAB recruits small ribosomal subunit
- tRNA-bound 40S scans mRNA to locate START

THE RIBOSOME

