All RNAs great and small

Institute of Genetics and Biotechnology University of Warsaw

lecture 3

RNA enzymes and complexes RNA granules RNA decay

- · 3' → 5' exo/endo nuclease complex;
- 10 core components (RNA BP)
- catalytically active exo hydrolytic Dis3/Rrp44 (RNase II)
- PIN domain with endo activity
- nuclear cofactors- RNA BP Rrp47, nuclease Rrp6 (RNase D), RNA helicase Mtr4
- cytoplasmic cofactors- Ski2-3-8 complex (RNA helicase Ski2), GTPase Ski7
- subtrates- processing and/or degradation of almost all RNAs

Lecture on the exosome by Rafał Tomecki

EXOSOME: 3'→ 5' decay: FUNCTION

NUCLEAR: Rrp6 and core components have partly separate functions

- 3' -end processing of 5.8S rRNA, sn/snoRNAs, tRNAs, SRP RNA
- degradation of pre-mRNAs, tRNAs, sn/snoRNAs
- degradation of other ncRNAs: CUTs, PROMPTS

CYTOPLASMIC:

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay, ARE-

dependent decay

TRAMP - EXOSOME COFACTORS (yeast)

- exosome via Mtr4

- Nrd1/Nab3 complex

Polyadenylation-mediated nuclear discard pathway for <u>defective RNAs</u>

- hypomodified tRNAs
- CUTs (Cryptic Unstable Transcripts)
- ncRNAs: sn/snoRNAs, rRNAs, some mRNAs

TRAMP + Exosome = nuclear RNA surveillance

Mtr4 – DEAH box RNA helicase Air1/2 – RNA binding proteins Trf4/5 – poly(A) polymerases

Substrate specificity conferred by Trf4/5 Ai1/2 are highly redundant

TRAMP 4-2: mRNA, ncRNA

TRAMP 4-1: mRNA, introns

TRAMP 5-1: pre-rRNA

TRAMP

- interacts with the exosome via Mtr4 role in degradation
- role in sn/snoRNA 3' end processing together with the exosome
- interacts with Nrd1/Nab3 complex role in ncRNA Pol II termination
- role in transcription silencing in S. cerevisiae and S. pombe (Cid14)

NEXT and PAXT - EXOSOME COFACTORS (humans)

PAXT PolyA tail eXosome Targeting connection CBP80 ZC3H18 CBP2 ARS2 ZFC3H1 hMTR4 AAAA PABPN1 EXOSOME Polyadenylated nuclear RNAs e.g. spliced SNHG transcripts Nucleus Cytoplasm

• ZFC3H1 (Zn-knuckle protein) links MTR4 with PABPN1 in PAXT

ZCCHC8

EXOSOME

ZCCHC8

RMB7

Zn-knucle

RNA binding

• ZFC3H1/PABPN1 and RBM7/ZCCHC8 (NEXT) interact with MTR4 in a mutually exclusive manner

• PAXT and NEXT direct distinct RNA species for nuclear exosome degradation

 PAXT targets tend to be longer and more extensively polyadenylated than NEXT targets

EXOSOME with TRAMP, NEXT, PAXT

NNS-TRAMP-exosome

INTEGRATOR

- recruited contransctiptionaly to snRNA promoter
- interacts with Pol II CTD (Ser7-P/Ser2-P dyad)
- cleaves pre-snRNA at 3'box (endonuclease Int11)
- involved in transcription termination at snRNA genes
- contributes to transcription termination at mRNA genes (intronless in particular)
- promotes transcription elongation by nascent transcript cleavage (Polll release)

XRN family: $5' \rightarrow 3'$ processive exonucleases

CYTOPLASMIC XRN1

Xiang et al, 2009, Nature

- generic mRNA decay
- specialised mRNA decay pathways: NMD, NSD, NO-GO decay,

ARE-dependent decay

- degradation of miRNA-dependent mRNA cleavage products (in plants)
- degradation of some ncRNAs: CUTs, SUTs, XUTs

Yeast Rat1 and Xrn1 have also deNADding activity

DCP/NUDT- DECAPPING ENZYMES

<u>Dcp1/Dcp2</u> complex participates in mRNA 5' decay

- catalyses the reaction m⁷GpppX-mRNA -> m⁷GDP + 5'p-mRNA
- Dcp2 is the catalytic subunit (pyrophosphatase Nudix domain)
- $\boldsymbol{\cdot}$ Dcp1 is required for activity *in vivo*, interacts with other proteins

Dcp2

(yeast Lsm1-7, Dhh1, Pat1, Edc1-3, Upf1-3)

Base 1

O(CH₃)

 \cdot Dcp1/Dcp2p is regulated by Pab1 and activating factors

She et al. Nat.Struct. Mol. Biol, 2004

Wang et al. PNAS, 2002

<u>NUDT</u> proteins (22):

in vivo decapping Nudt16, Nudt3['] (mammals) *in vivo* deNADding Nudt12 (mammals)

- <u>DcpS</u>: HIT pyrophosphatase ("histidine triad" on the C-terminus)
- catalyses the cleavage of m⁷GDP -> m⁷GMP + Pi remaining after decapping during mRNA 5' decay
- $\boldsymbol{\cdot}$ cooperates with the exosome during mRNA 3' decay
- (m⁷GpppX-oligoRNA -> m⁷GMP+ pp-oligoRNA)
- functions as an asymmetric dimer

ŃH₂

ACTIVITY	SUBSTRATE	MmDXO	At DXO1
5'-3' exoribonuclease	p-RNA	+++	+
Pyrophosphohydrolase	ppp-RNA	+++	-
Decapping (unmethylated cap)	Gppp-RNA	+++	-
Decapping (mature cap)	m ⁷ Gppp-RNA	+++	-
DeNADding	NppA-RNA	++++	+++

Additional activities:

- 5' OH RNA hydrolase

- FAD and CoA decapping nuclease

A. Kwaśnik, PhD thesis, 2019

DXO/Rai1 family

ACTIVITY	SUBSTRATE	MmDXO	At DXO1
5'-3' exoribonuclease	p-RNA	++++	+
Pyrophosphohydrolase	ppp-RNA	+++	-
Decapping (unmethylated cap)	Gppp-RNA	+++	-
Decapping (mature cap)	m ⁷ Gppp-RNA	+++	-
DeNADding	NppA-RNA	++++	+++

Additional activities: - 5' OH RNA hydrolase

- FAD and CoA decapping nuclease

A. Kwaśnik, PhD thesis, 2019

RNP granule assembly

by protein-protein and RNA-RNA interactions

Assembly promoted by:

- Longer RNA length
- High local concentrations
- RNAs with increased ability to interact
- Multivalent RNA-binding proteins

Treeck and Parker, Cell, 2018 Verdile et al, Front Genet, 2019

Energy

Phase transition Droplets, MLOs (Membraneless Organelles) Liquid-Liquid Phase Separation (LLPS)

RNA binding

High concentration

triggers LLPS

Formed by unstructured protein domains around RNAs *IDR* - Intrinsic Disordered Domains *PLD* - Prion-Like Domains

Organize several cellular processes:

- Heterochromatin structure (HP1)
- Transcription (Mediator, Pol II CTD)
- Processing (nucleolus, spliceosome, SR proteins, Cajal bodies)
- RNA retention and storage (Nuclear speckles, Paraspeckles, P-bodies, Stress Granules)
- RNA decay (degradosome)
- Protein modificarion and degradation (autophagosome, proteasome)

Cellular Condensates

Banani et al, Nat Rev Cell Mol Biol, 2017

Wegener and Müller-McNicoll, Sem Cell Dev Biol 2018

Cajal bodies

Cytoplasmic P-bodies and Stress Granules

mRNA storage mRNA decay

SG: global translation halts upon stress, mRNAs bound to the translational machinery and other proteins form SGs.

PB: translationally stalled mRNAs devoid of initiation factors shuttle to PBs.

Chantarachot and Bailey-Serres, Plant Phys, 2018

Dynamic biomolecular condensates Form by phase separation of RNAs and proteins Role in translational control and proteome buffering upon translational arrest (PB) and stress (SG)

Translation in SGs

- nontranslating mRNAs are preferentially recruited to SGs
- mRNAs in SGs can undergo translation (complete cycle)
- translating mRNAs can enter, leave, or stably localize to SGs
- translation in SGs mainly, but not only, occurs on mRNAs enhanced under stress (shown using single-molecule mRNA imaging, SunTag)

mRNA DEGRADATION in the CYTOPLASM

Balagopal and Parker, Cur.Op.Cel.Biol., 2009

mRNA general decay in the cytoplasm

RNA is also degraded in the nucleus:

- unspliced, unporcessed or unexported mRNAs
- aberrant ncRNAs, unmodified tRNAs, excessive rRNAs and tRNAs

mRNA quality control decay in the cytoplasm

- **NMD** Nonsense Mediated Decay (mRNAs with premature STOP codon)
- **NGD No-Go Decay** (ribosome stuck on an obstacle)
- **NSD Non-Stop Decay** (mRNAs with no STOP codon)

Problems with a stalling ribosome during translation

(A) Improper termination

Garneau et al, Nat.Rev.Mol. el. iol. 2007

Ribosome collision in RQC during NGD

- Stacked or colliding ribosomes are required to elicit NGD
- Ubiquitination of RPS3 by HEL2 triggers RQC

RQC mechanism

RQC mechanism

Dom34-Hbs1-Rli1 or Hel2-Asc1-Slh1 facilitate subunit dissociation of stalled ribosomes RQC proteins assemble on 60S - Ltn1 Ub ligase ubiquitinates the nascent peptide - Rqc2, Cdc48 and cofactors remove nascent peptide for proteasomal degradation -Alternative pathways: via addition of CAT-tail (Ala and Thr extension)

CATylation

The canonical RQC is preferred but if ubiquitylation of the nascent polypeptide fails, CAT tail is added by Rqc2 to extract the trapped polypeptide

CATylation results in

- degradation of aberrant proteins
- nascent chain aggregation
- activation of stress signaling
- nascent chain proteolysis

Co-translational protein and mRNA QC

NEXT LECTURE:

Global analyses of RNAs and RNPs